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J .  Phys. A: Math.  Gen .  20 (1987) 5189-5198. Printed in the UK 

Higher-order correction to the Casimir force on a compact ball 
when ~p = 1 

I Brevik 
Luftkrigsskolen, Trondheim-Mil,  N-7000 Trondheim, Norway 

Receivcd 9 March 1987 

Abstract. The Casimir surface force density on a compact spherical ball composed of 
matter satisfying the condition . ~ p  = 1 ( E  being the permittivity and  p the permeability) is 
calculated. The matter is taken to be non-dispersive. Schwinger’s source theory is employed. 
The present calculation improves a previous calculation of the same effect by Brevik a n d  
Kolbenstvedt by four orders of magnitude in the Debye expansion. As before, the surface 
force is found to be repulsive. 

1. Introduction 

The Casimir effect is the change in the electromagnetic vacuum field experienced when 
the infinite ‘ground state’ of the vacuum becomes disturbed by some kind of external 
constraint. Usually, one idealises the situation in the sense that the constraint is taken 
to be an ideal boundary, such as the surface of a metal of infinite conductivity. A 
characteristic feature of the development of this field of research in recent years is the 
increasing emphasis that has been laid on the need to also take the properties of real 
material media into consideration. A real medium is endowed with permittivity and  
permeability as well as dispersive properties at high frequencies. According to the 
Kramers-Kronig formulae (Landau and Lifshitz 1984) a material concept such as the 
permittivity must in general even be complex. 

Progress in this field of research is usually made by adopting one or more simplifying 
conditions as regards the properties of the medium. In the present paper we shall 
examine the Casimir effect under the following set of assumptions. There is an isotropic 
and homogeneous medium present, in the form of a compact spherical ball of radius 
a. The material is assumed non-dispersive, it is at zero absolute temperature and  it 
satisfies the condition 

&p = 1 (1.1) 
where the permittivity e and the permeability p are real quantities. This particular 
condition has quite remarkable properties. Mathematically, it eliminates cutoff prob- 
lems that otherwise plague Casimir theories in the presence of ordinary dielectric 
media (Milton 1980, Brevik 1982a). Physically, the condition is exactly the one required 
in Lee’s theory of the vacuum (Lee 1981) to ensure the gluon velocity to be equal to 
the velocity of light. There are accordingly both mathematical and physical reasons 
for studying media satisfying the condition (1.1). We have earlier studied various 
aspects of this kind of theory (Brevik and  Kolbenstvedt 1982a, b, 1983, 1984, 1985, 
Brevik 1982b). In one of these references (Brevik and Kolbenstvedt 1982b, hereafter 
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referred to as B K )  we derived the following formula for the surface force density on 
the sphere: 

Here 

F,, = 0.092 35/8rra4 (1.3) 

is the result derived by Milton et a1 (1978) for a perfectly conducting shell in vacuum, 
and 

P = PdP2 ( 1.4) 

where p ,  is the inside permeability and p2 the outside permeability. The purpose of 
the present paper is to improve on the accuracy of the result (1.2) by carrying out the 
Debye expansion of the Riccati-Bessel functions four orders of magnitude further. It 
turns out that the resulting formula for the force exhibits the same essential properties 
as were found previously in B K :  the force is repulsive; it is moreover invariant under 
the interchange between the inside and the outside medium and it approaches the 
value Fo if p -$O or p +CO. We shall also have the opportunity to demonstate by an 
example how the region of applicability of the Debye expansion, which after all is an  
asymptotic expansion, is limited. In  the appendix we have collected useful information 
about the high-order polynomials occurring in the Debye expansion. 

Readers interested in general review papers on the Casimir effect are referred to 
the recent works of Plunien er a1 (1986) and DeRaad (1989,  the latter dealing with 
Schwinger's source theory. 

In  this paper, h and c are put equal to unity. 

2. Calculation by means of the Debye expansion 

The general expression for the surface force density on the sphere, cf BK, can be written 
as follows: 

with v = 1 +f . This expression follows from application of the Maxwell stress tensor 
and  the electromagnetic boundary conditions at r = a ;  there is thus no mathematical 
approximation involved at this stage. In the derivation of (2.1) we have performed a 
complex frequency rotation: 

k-$  it= i; T-$  ir^ (2.2) 

with 7 = t - t' denoting the temporal splitting of the two spacetime points involved. 
Further, 6 is the non-dimensional cutoff parameter and x the non-dimensional 
frequency; they are defined as 

A 

6 = + / a  x = ka (2.3) 
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with x 2 0 .  The remaining quantities in (2.1) are defined as 

x=/L- l  

S/(X) = (nx/2)”2z,(x) 

er(x) = (2x/ ~ ) ‘ ” K , ( x )  

(2.4) 

(2.5a) 

(2.5 b )  

The Wronskian of the Riccati-Bessel functions defined according to (2.5) is 
W{s, ,  e,} = -1. 

We now calculate (2.1) analytically using the Debye expansion. Our first task is 
to expand the inverse of the denominator to thc order v - ~ .  The Debye expansion can 
in general be written as follows (Abramowitz and Stegun 1970): 

(2.8) 

(2.9) 

(2.10) 

where we have defined 

z = x / u  t (  z )  = (1 + 2 2 )  ~ ”2. (2.11) 

The values of u k  and u k  up to k = 6 are given as polynomials in t ,  with exact fractional 
coefficients, in the appendix. The value of q will not be needed in the following. 

We now expand the inverse of the denominator in (2.1), making use of the relatively 
simple expressions for sle; and s /e l  in the appendix. A lengthy calculation gives 

+- 2 - 27t2+ 60t4 - 35t6 - 

_- t6  ’ (1-54t2+1146t4-620416+13239r*-12258~10 
v6 16(p + 1)2 

8pP 
+4131 t ’ * + -  ( 2  -27t2 + 60t4 - 35t6) - 

( P  + 

(2.12) 
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We define the following integrals: 

d 
rr dz  

dz cos(6vz)z-ln(1-A:) (2.13) 

(2.14) 
d 

rr dz  
dzcos(Svz)zt6--1n(1--Af) 

K ( I ,  a ) = -  dz  C O s ( S v z ) Z t 6  2-27t’+60t4-35t6- (; - ~~)’1‘]“1.(1 - A : )  
2H i: dz  

(2.15) 

1 -54t’+1146t4-6204t6+13 239t8 

8ptb 

( p + 1 ) -  
- 12 258t1”+4131f12+- , (2 - 27t2+ 60t4 - 35t6 )  

so that the expression (2.1) can be written as follows: 

(2.16) 

(2.17) 

The two first of these integrals, J ( I ,  8 )  and I(/, S ) ,  are defined such as in B K .  

We shall not calculate the sum of J ( I ,  S )  here since this term, which is the only 
term occurring in the case of a conducting shell in vacuum, was calculated accurately 
by Milton et a1 (1978). These authors employed numerical methods for the lowest 
values of I and the Debye expansion thereafter, obtaining 

X 

1 J (  I ,  6 )  = -0.092 35. 
/ = I  

(2.18) 

In this calculation, the cutoff parameter S played an  important role. We shall adopt 
the value (2.18) in the following. 

Our remaining task is to calculate the sum over I of the three integrals relating to 
the material medium, namely I ( / ,  S) ,  K ( I ,  8 )  and L(I, 8 ) .  It turns out that in these 
cases the parameter 6 is without significance. We thus put 6 = 0 in the following. We 
intend to calculate these integrals to an accuracy of O( 1 /  v6). From (A1 1 )  it is apparent 
that the leading term in A,  is of O( 1 /  v). An expansion in A ,  as the smallness parameter 
is thus equivalent to an expansion in 1 /  U, which is in accordance with the spirit of the 
Debye expansion. First expanding the logarithm: 

In( 1 -A:) = - A f  -+A;  -fA:+O(A:) 

t 6  1 1 
4 v 2  8 v  48 v4 

= --( 1 - 7 ( 4 - 5 4 r 2 +  120r4-71t6)+-(3-162t2+3438r4 

-18606r6+39636r8-36 594r’”+12286r”)+O(l/v6)) (2.19) 
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and thereafter differentiating the expression with respect to z, observing that d t / d z  = 
- z t 3 ,  we obtain 

d 
dz  

v ' - I n ( l - ~ f )  

1 
= +zt8( 1 --(2 - 3 6 t ' i  loot4-71 t 6 )  

4 2  

1 
16v 

+ ~ ( l  -72t2+1910t4-12404t6+30828r8-32 528t i0+12 286t") 

+ O( 1/ v6) (2.20) 

where we have applied a factor v 2  for convenience. 
We have thus found the Debye expansions that are needed to calculate I(/, 0), 

K ( 5 0 )  and L( 1 ,O) .  Since the leading term in (2.20) is of order unity, it follows from 
the definition equations (2.14)-(2.16) that these integrals are also of order unity. It is 
convenient to split them up  as follows: 

1 1 
I( I, 0) = I,+ 7 I 2  + - I + . . . 

U v 4  

L( ( 0 )  = Lo+.  . , 

where the coefficients I o ,  I',. . . , are independent of 1. These coefficients consist 
essentially of beta functions. Their evaluation yields 

(2.22) 

(2.23) 

Z4=3 j ' d z ~ ' t ~ ~ ( 1  -72t2+1910t4-  12404t6+30828t8-32  528 1"+12 286t") 
1 6 7  

= -30 675/2" (2.24) 

(2.25) 

Ko='i,,' 4 x  d z z ' t " [ 2 - 2 7 t 1 + 6 0 t 4 - 3 5 t 6 -  

p - 1  - - - + 3 + 7 1 5 ( ~ )  2IR 3 

= 3 [ 175 69 1 - 36 439 (-) p - 1  '1 
K - - L ~ o x d z z 2 t ' 4 [ 2 - 2 7 t 2 + 6 0 t 4 - 3 5 t 6 -  - :) ' 1.1 (2  - 36t' + 100t4 - 7 1 t 6 )  (i 1 6 x  2 -  

226 P + 1  
(2.26) 
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L,! =3 lom dz z2fI4(  1 - 54t2+ 1 146t4-6204t6+ 13 239t8 - 12 258t” 
1 6 ~  

”(&2I;.‘) 12) 

8pUt6 
+4131tI2+- (2 - 27t2 + 60t4 - 35t6) - 

( P  + 

226 ( P + 1 )  
= - ( 2 3 4 7 5 + 2 2 4 7 4 4 7 - 2 3 5  3 P 144 

The force (2.17) can be expressed in terms of these coefficients as 

I F=--!---(1-1)2(0.09235+------ P 
8Ta4 + + 1  (/A+1)2 O / = 1  v 

(2.27) 

(2.28) 

From Gradshteyn and Ryzhik (1980, p 7) we have for the first two sums 

“ 1  c -=LT2-4 2 2  (2.29) 
/ = I  U 

(2.30) 

whereas the third sum can be evaluated by first rewriting it as a sum ranging from -03 

to 03 and thereafter using the calculus of residues (Morse and Feshbach 1953, p 413) 
to obtain 

l T  
- 64 - ----(..cot Tz) 

2 5 !  dzs z = - I / 2  

= A r 6  - 64. (2.3 1) 

We now have at our disposal all quantities needed to evaluate (2.28). Omitting the 
remainder term and reintroducing Fo from (1.3), we can conveniently express the 
surface force density as follows: 

1-0.001 25- +0.05667- ’ 
( P  + ( P  + ( P  + 

+ 0.022 44( 5) (2.32) 

showing that the permeability occurs only in the combinations ( F  - l ) 2 / ( p  + 1)2 and 
p / ( p  + 1)2. We have in (2.32) chosen to give the same number of decimals as in F,, 
cf (1.3). Expression (2.32) is our main result. 
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3. Conclusions and final remarks 

(i) Our main purpose in this paper has been to calculate, by use of the Debye expansion, 
the surface force density on a compact spherical ball composed of matter satisfying 
the condition (1.1). The result, shown in (2.32), follows from an expansion of the 
matter-relating terms in the integrand in the general expression (2.1) to an accuracy 
of 0(1/ v'). Our earlier result ( B K ) ,  which is reproduced in (1.2), corresponded to an 
accuracy of O( 1/ v'), i.e. it terminated with the Io  term in (2.28). In the present paper 
there is thus an improvement of four orders in magnitude in the matter-relating terms. 

(ii) The force (2.32) is generally repulsive. Correspondingly, the Casimir energy E 
is positive. Specifically, if 

is the Casimir energy for a perfectly conducting shell, we have 

With the exception of the extreme cases p + 0 or p +CO,  E is thus always less than Eo.  
(iii) Expression (2.32) is invariant under the substitution p -+ l / p .  Since p is the 

relative inside/outside permeability, this means that the force is invariant under an 
interchange of the inside with the outside medium. In  particular, the force on the 
surface of a compact ball in vacuum is the same as on the spherical boundary of a 
cavity, if the matter around the cavity is the same as in the ball. 

(iv) It ought to be borne in mind that we have assumed the medium to be 
non-dispersiue. Our theory thus falls within the same category as that of Milton et a1 
(1978). The inclusion of dispersive effects in the Casimir theory of dielectric media is 
an interesting generalisation, which may imply important physical consequences for 
electrodynamics as well as for the formally similar quantum chromodynamics in the 
limit of vanishing quark-gluon coupling. Candelas ( 1982,1986) has discussed problems 
of this kind; the reader may consult also the related papers by Baacke and Kasperidus 
(1985) and Baacke and Krusemann (1986). Brevik and Einevoll (1987) have recently 
examined the consequences of a specific dispersive model. 

(v) It is instructive to have a closer look at the sum 1: J (  I ,  6 ) .  We adopted above 
the result (2.18), which was calculated by Milton er a1 (1978). One may wonder what 
would be the result of a straightforward analytic calculation of this sum using the same 
method as we used above. It turns out, in fact, that such a calculation would not work 
beyond the second-order approximation. This can easily be seen if we make a decompo- 
sition of the term, by analogy to (2.21), 

Eo = 0.092 35/2a (3.1) 

E / E o =  F I F O .  (3.2) 

1 1 
J ( 1 , 6 ) = J o ( 6 ) + - J  v 2  2 +-J v 4  4 + . . .  (3.3) 

(it is sufficient to go to the fourth order). I t  is necessary to keep 6 different from zero 
in J o ( S )  to avoid divergences. Inserting the expansion (2.20) into (2.13) we obtain for 
the zeroth-order term 

@z 

J o ( 6 1 = 2 [  32 exp(-bv) (3.4) 
T o  

cf Gradshteyn and Ryzhik (1980, formula 3.737.5). Summing over I and afterwards 
letting S + 0 we obtain 

(3.5) 
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Evaluating the second and  third term (with 6 = 0) in (3.3) we obtain, after summing 
over 1, 

“ 1  
1 = 1  v 

J 2  1 7 = 0.001 03 

J4 4=4.51225.  
1 1 1  v 

(3.6) 

(3.7) 

Here the second-order result in (3.6) is reasonable: when combined with (3.5) it yields 
the number -0.092 72 which is not very far from the number in (2.18). However, the 
fourth-order result in (3.7) is obviously wrong. Thus, the expansion procedure, which 
proved to be most useful in the evaluation of all matter-relating terms above, does not 
work beyond the second order as far as J (  1, 6 )  is concerned. This term is too delicate 
to be calculable by the straightforward expansion method. We trace this discrepancy 
back to the fact that the Debye expansion is an asymptotic expansion; as such it is 
useful and accurate up to an optimum number of terms but decreases in accuracy if 
this optimum number is exceeded. 
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Appendix. The coefficients in the Debye expansion 

We need the coefficients w k  and uh up to the sixth order. Since the high-power terms 
in the polynomials tend to compensate each other closely in expressions of physical 
interest, i t  is advantageous to give the coefficients in exact form, as fractional numbers. 
They are 

( A I )  

9 , 77 385 th u2 = - t- - - t 4  + - 
128 192 1152 

79 455 t 6  t ’+ - t 4  -- 7 
U 7 -  - 128 192 1152 

75 4563 17017 , 85085[, 
U3=-t3-- t5+ - t  -- 

1024 5120 9216 82944 

69 13651 18095 9509SI, 
U ---t3+- t -- t7+- 

1024 15360 9216 82944 3 -  

(A2b) 

3675 96 833 144001 7436 429 t10+37 182 145 t 1 2  
t6+- (A4a) u,=-t -- 

32 768 40960 16 384 - 663 552 7962 624 

3525 96 187 6663 371 la+7878871 1‘0- 40415 37Stlz 
v 4 =  ---t4+- t6 - 

32768 40960 737280 663552 7962 624 
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59 535 67 608983 t,+250 881 631 108 313 205 
262 144 9175 040 5898 240 

t 5  - t -  
1179 648 

U5=- 

5391 411 025t13 - 5391 411 025f ,5  + 
63 700 992 191 102976 

58 065 67 165 069 254 476 937 1008 167 303 l 

262 144 9175 040 5898 240 10 616 832 
U=-- t 5 +  t -  f'+ 

- 5673 995 327 +"5763 232 475 t 1 5  

63 700 992 
388 895 895 t 8 +  1441 372 804469 

191 102 976 
2401 245 
4194 304' - 14 680 064 6606028800 47 185 920 

33 010 308 331 t 1 2  
f l u -  U 6  = 

4445922 195 1169936 192425t16+5849680962 125t18 
(A6a) + t ' 4 -  

4194 304 1528823808 27518828544 
2361 555 t 6 +  1933 307 473 
4194304 73400320 943 718 400 9437 184 

207 514649 173 6742 901 165 t 1 2  t u  - t l ' ) + -  0 6  = - 

1117254404695 1223 850302675 6183948445675 
1019215875 1528823808 27518828544 

tI4 + t ' 6  - t .  - 

(A6b) 
The values of u k ,  up  to k = 4, are as given in Abramowitz and Stegun (1970). The 
values for higher k can be found in British Association for the Advancement of Science 
(1952). As regards uk, the values up  to k = 3 follow from Abramowitz and Stegun 
(AS) ,  when one takes into account that our definition of uA is different from theirs: 

(A71 
The reason for this difference is that our uA refer to the Riccati- Bessel functions instead 
of to the modified Bessel functions. The vi. for higher k can be found from the recursive 
relations, also given by Abramowitz and Stegun. Actually, the values above were found 
by means of an analytic computer. 

VI, = Oh( AS) + f f u k - l  k = 1 , 2 , .  . . . 

The following relations between the coefficients are useful: 
U2 - U1 UI + U2 = 0 
uq - U J U I  + U2 U2 - U1 v i  + U, = 0 
u , - u , v ~ + u , v ~ - u , v ~ + u ~ u 4 - u , u 5 + u 6 = 0 .  

(A81 

Whereas the Debye expansions for sI, e, and their derivatives are complicated, cf (2.7)- 
(2.10), the expansions for the combinations s,e; and s;el are relatively simple: 

t 3  1 1 s,e;= -3 1 - -+-(2t3-27ts+60t7-35t9)+- 
I (  2v 16v3 256v5 

x (108t' - 3615t7 + 21 420t' - 47 250t" + 44 352tI3 - 15 015r " )  + O( I /  v 7 ) )  

(A9) 
t3 1 1 $ e , = +  1 + - - ~ ( 2 t 3 - 2 7 t 5 + 6 0 ~ ' - 3 5 t 9 ) - -  ( 2v 16v 2 5 6 ~ '  
x (108t' - 3615t'+ 21 420t9 - 47 250t" + 44 352tI3 - 15 015r'5) + O( 1/ Y')) . 

(A101 
When deriving these expressions, the relations (A8) were taken into account. 
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It is useful to give also the expression for A,,  defined in (2.6): 

- 27t2+ 60t4 - 35t6) 

1 
128v4 

-- (108f’-3615t4+21 420f6-47 250t8 

+ 44 3 5 2 f l o  - 1 5 0 1 5 t l 2  ) + 0 ( 1 / v6 )) . 
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